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SUMMARY

A simplified analysis is made of mass transfer cooling - that is,
injection of a forelgn gas - near the stagnation point for two-dimensional
and axisymmetric bodies. The reduction in heat transfer is given in
terms of the properties of the coolant gas snd it is shown that the heat
transfer may be reduced considerably by the introduction of a gas having
sppropriate thermal and diffusive properties. The mechanism by which
heat transfer is reduced is discussed.

INTRODUCTION

The reduction of heat transfer near the stagnation point of a blunt
body (two-dimensional or axisymmetric) is of primary importance when the
body attains high velocity. One method of cooling is to introduce gas
of high specific heat into the laminar boundary layer near the stagna-
tion point and to allow this gas to flow over the nose of the body so
that large amounts of heat are convected away from the nose.

A number of exact solutions based on variocus assumptions of fluid
properties are avallable for stegnation-point heat transfer with no
injection. (A comprehensive list of these references may be found in
refs. 1, 2, and 3.) It has also been shown that the varistion of the
product of density and coefficient of viscosity across the boundary
layer has an important effect on the heat transfer (ref. 4).

The boundary-layer equations for & binary mixture are well estab-
lished (ref 5) and several methods are available for the evaluation of
the thermal and diffusive properties of a binary mixture (ref. 6).

Exsct solutions (refs. 1 and 3) have recently been obtained for
air-to-air injection near the stagnation point; these solutions have
required lengthy numericel integration techniques and are necessarily
limited to discrete values of the parameters involved (for example, the
rate of injection of mess and the viscosity-law assumption).
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The purpose of this paper is to present a simplified analysis by
which the effect on the heat transfer of injection of alr, or a foreign
gas, may be found and, slsc, to show more clearly the importent thermal
and diffusive properties of the foreign gas 1f it is to be effective as
a coolant. Application of the present method to ablation cooling is
made in reference T. i

SYMBOLS
b4 coordinate along wall
y coordinate normel to wall
Z transformed y-coordinate
Y arbitrary value of y outside boundary layer
A arbitrary value of 2z outeide boundary layer
u component of veloelty in x-direction
v component of velocity in y-direction
Vv modified velocity component,__%%
U free-stream velocity in x-direction
C constant in velocity distribution
T temperature
T mean temperature (eq. (43))
W concentration of forelgn gas
W mean concentration (eq. (L42))
o] density of mixture
v coefficient of wviscosity
k thermal conductivity of mixture

D12 coefficient of binery diffusivity
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m rate of mass injection per unit ares of wall

Cp specific heat at constant pressure

ey mean specific heat (eq. (47))

Nt Nusselt number

R Reynolds number

Np,. Prandtl number

Nge Sehmidt number

q heat-transfer rate per unit area

By, velocity~boundary-~layer thickness

Sq thermal-boundary-layer thickness

Sy concentration-boundary-layer thickness

X function of Prandtl number and Schmidt number (defined.by
eq. (L0))

Hopp effective heat capacity of forelgn gas

Subscripts:

e external flow, near stagnation point

W wall

c coolant, far inside wall

0] no injection

1 foreign gas

2 air

b body
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DESCRIPTION OF THE BOUNDARY LAYER

The flow considered is that shown in figure 1. In the steady state
the leminer boundary layer near the stagnation point is a thin layer of
fluid in which the velocity, temperature, and concentration of the
foreign gas vary rapidly from the external stream values to the wall -
values. In the neighborhood of the stagnation poilnt the three super-
imposed boundary layers (that is, the velocity, temperature, and con-
centration boundary layers) have constant, although different,
thicknesses.

It is assumed that the component of velocity parallel to the wall
ig linear in x and that the normal component of velocity, the tempera-
ture, the concentration of the foreign gas, and the properties of the
mixture are all functions only of y, the distance normal to the wall.
(This assumption results directly from the "similarity" nature of the
flow and the sbsence of thermal and concentration gradlents along the
wall.) It is also assumed, consistent with the foregoing variation of
velocity components, that the coolant gas is injected normelly at the
wall with a velocity independent of x.

When a given amount of coolant gas is injected, 1t diffuses through

the boundery layer and is convected with the air, as & mixture, under

the action of the pressure gradient imposed by the external flow and .
the shearing stress due to the presence of the wall. The concentration -
of foreign gas at the wall is uniquely determined by the rate of injec-
tion. The extent of the boundary-layer shielding depends upon the spe-
cific heat of the foreign gas and upon the wall temperature as well as
the coolant and stagnation temperatures. The shielding also depends
upon the manner in which the coolant gas diffuses through the boundary
layer. The analysis shows the relative importance of these quantities.

ANALYSIS

The method to be used is as follows: the wall conditions for
coolent injection are formulated in a simple manner (end the results
are justified by a more detailed consideration of the flow within the
porous wall presented in the appendix); use is then made of previous
"exact" results for stagnation-point heat transfer with no injection in
order to determine the gross characteristics of the thermal and viscous
boundary layers nesr the stagnation point. These results are then used
in a simple approximaste integral method to determine the effect of injec-~
tion on the heat transfer to the wall. ) ) .
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The Coolent Flow

The boundary conditions at & porous wall through which a coolant
is Injected may be obtained very simply by lgnoring the presence of the
solid part of the wall; the justification for this is given in the
appendix where more detailed considerations are made.

When the steady flow of coolant toward the surface of the wall is
considered, the volume taken up by the solid wall belng neglected, it
is seen that there is a balance of diffusion and conveciion which
governs the flow of mass and heat within the wall.

The trensfer of mass is given simply by
pv:pwvw=ﬂ1 (l)
where m is constant.

The diffusion of air inward from the surface is balanced by the
convection toward the surface:

aw .
-pDy, SX (1 - Wn (2)
12 &y
Diffusion of air Convection of air
from surface toward surface

since W is the concentration of the foreign gas and (1 - W) is that
of air.

Similarly, the transfer of heat is given by

k 5 = cP,l(T - Tc)m (5)
Diffusion of Convection of heat
hegt from toward surface
surface

It is important to note here that, even though the specific heat of the
mixture cp is given by

cp = ey W + cp,e(l -W) (&)

(with cp,1 end cp o constant), the value used correctly in equation (3)
is Cp,1; in unit time the heat transferred at any point ¥y in =a
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direction away from the surface is sufficlent to raise an amount of
forelgn gas of specific heat Cp,1 throughﬁﬁhe temperature range T - Te.

Evaluating equations (2) and (3) at the wall surface gives the fol-
lowing boundary conditions which are required for the solution of the
boundary-layer equations:

—[lez %‘ﬂw = (1 - Ww)ﬁl (5)

= Zl, = opa(y - T (6)

Detailed study of the flow within the porous wall yields the same bound-
ary conditions. (See appendix.) -

The Boundary-Layer Integral Equations

The integral equations which describe the transfer of mass and heat
in the boundary layer are derived in & simple way without reference to
the general differential equations.

Consider a small rectangle of height Y (Y greater than any
boundary-layer thickness) and length Ax, in which p, W, and T are
independent of x, near the stagnation point of a two-dimensionsl body.
(See fig. 2.) The continuity of mess mey be expressed as follows:

Y Y
-p(Y)v(Y) ax + m Ax = [f pu d.y] - [f pu dy
o X+0% ° x
Flow in_from Injection Flow out at Flow in
external stream X + A at x

This equation, in the limit as Ax — O, becomes

Y
-o(X)v(Y) + i = ﬁ L pu dy (7

When the form U = Cx of the externsl veloecity is used and 1t is noted
that
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and

where % is independent of x, then equation (T) reduces to

p4

-o(N)v(Y) + m = CJ; P % dy (8)

Since the density p 1is a function of concentration and temperature,
it is convenient to introduce the quantities

=
Ve
> (9)
a. =idy
Z pw ‘

so that equation (8) becomes finally

Z
- V(z) + m = pr‘/; 3 dz (10)

Similarly, the equation for the transfer of foreign gas becomes
z u
n = prf W5 dz (11)
0
Gas injected Gas convected

The equation of heat transfer is written
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Z
ar _ . u
_cp,z(Te_ - Ty) o, V(Z) - <k E;) = prf ep(T - Ty) S dz
W 0
(12)
Counvectlon of heat Transfer of Convection of heat
from external stream heat to wall in boundary layer
The quantity V(Z) may be eliminated from equation (12) by use of
equations (4), (10), and (11); thus,
Z u 4aT
C ¢ (Te - T) =dz = &) + ¢ Te - Tyim 1
Dwk/; p( e ) 3 ( dy)w p,l( e - Tw) (13)

Alternatively, by use of the boundary condition given by equation (6),
equation (13) has the form

Z
cnwfo cp(Te - T) %dz = cp_,l(Te -~ Te)m _ (k)

The equatlons for transfer of heat and mass near the axisymmetric
stagnation point can be derived in a similer manner and are identical
with equations (10) to (14) where x is again the distance from the

Y
stagnation point along the surface but =z = 2\/n é% dy.
0

Heat-Transfer Relations for No Injection

The rate of heat transfer is first given in terms of Nusselt num-
ber NNu,W! Reynolds number R, and Prandtl number NPr,w for which'

the usual definitions near the stagnation point are used:

X dT




NACA TN 4391 9
and
T
Npr w = R, p,2

The rate of heat transfer to the wall with no injeetion 9 is now

ar 1/2 1 [‘mu,w
= —_— = C 2(Te - Tw) p.”].L",C —_— (15)
%o ( dy)w P ( ) Npr,w\  1/2
0
Nyu,w
Exact evaluation of the dimensionless perameter } has been
1/2
0

made by many investigators (for example, refs. 1, 2, and 4). The
following formulas were found to be in good sgreement with previous
exact results (ref. 1) under the assumption of constant pu:

For the axisymmetric body,

N

N, %\ _ lo0.765 - 0.065 (1 - E) Npp wo.h (16)
1/2 Te ’

& Jo

and for the two-dimensional body,

= |0.570 - 0.065 (1 - &) NPr,WO'lL

Nﬁu,w

Rw1/2 .

T (17)

Alternative expressions, based on the solutions presented in refer-
ence 4 in which pp 1is not constant, are as follows:

For the axisymmetric body,

0.4
W Peke 0.4
uZZ = 0,765( ) Npr w (18)
0



10 NACA TN 4391

and for the two-~dimensionsl body,

—_—t = Q. *
1/2 <; m ) Pr,w
Ry, 0

Boundary-Leyer Thickness Without Injection

Use is now made of these results (egs. (16) to (19)) to determine
the thickness 8,.0 of the velocity boundaery layer without injection.

’ .
Equation (13) with m = 0 is written in the form

1 ‘/hz Te -T g, o 1 [Hw 1/2 1 /Nﬁu,w (20)
By,0 0,C NPr,w\?wl/2
o

0 Te - Ty U 84,0
and linear profiles are assumed for veloclty and temperature in order to
evaluate the integral in equation (20); that is,

n__2
T 8,0
S (21)
Te -T | __z
Te - Tv 52,0

where 8&q 0 1s the thickness of the thermal boundary layer. The left-
2
2
s}
hand side of equation (20) is then approximately %<§2Lg) and equea-~
u,
tion (20) reduces to

1 8T,o 2 L (N 1/2 1 Nu,w (22)
6 Su,0 8u,O PG NPr,w Rwl/z -
0
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N
If the value of _Nu,w when N =1 1s signifled by the super-
Pr,w ¥

1l/2
r,2)
seript (1), then equations (16) to (19) show that
N N (1)
Nu,w\ _ [Nu,w Npy wp.h (23)
1/2 1/2 ’
R 0] R 0

This equation shows the effect of the Prandtl number on the heat-transfer
coefficient. When’ NPr,w = 1, the thermal and viscous diffusive effects

are similar so that -T:0 - 1; thus, from equation (22)
8

1,0
1/2 (1)
o]
2 v I v (2)
M R, o
p.C l/ 2
The nondimensional thickness 5u o LA is now assumed to be inde-
77 \Mye

pendent of the Prandtl number (since the momentum equation is only
weakly dependent on the Prandtl number); thus, when equations (23) and
(24) are inserted into equation (22), the following simple result is
obtailned:

5
T,0 _ -0.3

8u,O

Npr,w (25)

This result is anslogous %o that for a flat plate (ref. 8):

O _

_T -1/3
8y - NPT,W
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Injection of Air

Consider now the effect of injection of air into the boundsry layer.
The boundary layer becomes thicker because of the lncrease in mass flow
which results in reduced gradients in the boundary layer. In particular,
the heat transfer to the wall 1s reduced since the heat convected par-
allel to the wall in the boundary layer is increased.

The effect of air injection on the boundary-layer thickness 1s
given by considering the mass flow in unit time per unit area, as

follows:
Bu U 6u,O
c 2 4z = c 14z + m
pwj; U pr U
Mass flow with Mass flow with Mass
injection no inJjectlon injected
which gives
1 1 pi
= == U 26
2% =5%,0" Co (26)
'
when linear profiles are assumed for Y (that is, 1.z (no injec-
U U 5u,0

Z (injection)).
By

It is assumed that the relation given by equation (25) is still true
since the ratio of thermal-boundary-layer thickness to veloclity-boundary-

layer thickness depends on diffusive processes, that 1s, on the Prandtl
number.

u
U

With ¢ 3 = cp o equation (13) may be written by use of
equation (1%5) in the form

1’2 .
_l-fZTe_'E_Edz:_l_‘i S Maw i
Su Jg Te - Ty U By \PyC Npr v Rw1/2 (pwuwc)l/z
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Linear profiles for tempersture and velocity (eqs. (21)) and the expres-
sions for &, (eq. (26)) and 84,0 (eq. (24)) are used to simplify
this equation, with the following result:

N .
1 Nu,w 1 /‘NNu,w (1o ly -0.6) i o
0

In terms of the rate of heat transfer g, equation (27) has the
form

1 -0.6 :
q = qo - (l - 3’ NPr,w )Cp,z(Te - T-w)m
(28)
Heat transfer Boundary-layer shielding
for no by convectlon

injection

3

average temperature rise in the boundary layer of the mass introduced
at the wall surface. An alternative expression of this heal balance,
obtained by using the boundary condition given by equation (6), is

The quantity ( -1 NPI.’W'O'6) (Te - Ty) may be interpreted as the

99 = cp,2|j(Tw - To) + (l - %NPI.’W_O'G)(Te - Tw)}l;l (29)

When 9 is expressed in terms of dimensionless quantities by use
of equations (15) and (23), equation (29) becomes

N 0.6 m
Pr,w 1/2
Te = Ty (oy1,C) (30)
Te B Tc NNu W (l) 1 m
2 + =
1/2 1/2
W,
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Equation (30) may be used to determine the rate of injection
required to maintain the wall temperature T, at a given desired value

when Te and T, are specified.

Before proceeding to considerations of injection of foreign ges,
the results given by equation (27) are compared with avallable exact
solutions as a check on the vallidity of the several simplifying assump-
tions that have been made.

Firstly, under the assumption of constant pp, equations (16)
(eq. (17) for the two-dimensionsl flow) and (27) are used to give
M, w as a function of the dimensionless rate of mass, injection
122
Ry

_m

1/2
(o0
encee 1 and 3 shows very good agreement except for the extreme rates
of injection with Prandtl number eqpal to unity. (See figs. 3, L,
and 5.)

A comparison of these results with the results of refer-

Secondly, for varisble pu, equations (18) (or eq. (19)) and (27)
are used and the results are compared with those of references 3 and L.
For a Prandtl number of 0.71 and no injection reference 4 gives, for

the axisymmetric case,
olll'
Npu,w) o 67<fe”e)
1/2
R,/ Pty

and the present report gives (from eq. (18))

ﬁgﬁdi = 0.667 Pelle ok
Rwl/ 2 Pitee

A comparison of the results obtained by use of equation (18) with the
results of reference 3 in which the Sutherland viscosity law was used
is presented in figure 6.

The effects of injection are also compared when pu is varieble;
again good agreement is found except for the high injection rates.
(See fig. 5.) '
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With this justification of the assumptions that have been made, the
method 1s now extended to take account of the additional effects which
result from the injection of a foreign gas (that is, gas having prop-
erties different from those of air).

Injection of Foreign Gas

The mechanism by which air diffuses through the boundary layer in
8 binary mixture due to the concentration gradient is exactly analogous
to that by which heat diffuses in the absence of viscous dissipation
for air-to-air injection. In this analogy the coefficient of binary

diffusivity Djo corresponds to the thermal diffusivity pc: and
2
J
the Sclmidt mumber Ng, = B2 corresponds to the Prandtl mumber
PDo
N — u’cp,z
Pr - T x °

The anselogy is easily seen when the gas-transfer equation (11) is
rewritten as

(31)

and compared with the heat-transfer equation for air-to-air injection,

ZT, - T ;
m
prf e § 2 = e (32)
0 Te - Ty e - Ty
Ty - T,

The boundary condition at the wall is

_[pnlz 4 IS W)t (33)

which is compared with

k 4T .
et ooo_ N
[p pcp,e ] ( W c)m (3 )
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The analogous quantities are presented in the following table:

Binary Thermal
diffusion diffusion
Te = T
T~.T
1 -W —c
Te - Te
Ty - T
W, e w
Ta - Ta
D12 . k-
pcp,g
NSc NPr

It may be verified that all the boundary conditions at the wall, in the
external flow, and at large distances into the interlor of the wall
agree with the foregoing analogy.

Because of the foregoing comparison the following results may be
written immediately: from equation (25),

By -0.3

5u = NSc’w (35)
where &, 1is the thickness of the concentration boundary layer, and
from equation (30)

0.6 m

NSc W -
’ 1/2
W, = (o) (36)

m

i___ =n
1/2 . t3 (pw“wc)l/e
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Ny (1)
The value of [ —¥ to be used in equation (36) is necessarily
1/2
Be " /o
that given by equation (18) or equation (19) since pu is now a vari-
able quantity and depends on the concentration of foreign gas in the

boundery layer.

When the gas injected is different from air, the amount of shielding
by convection in the boundary layer depends critically upon the specific
heat of the gas cp 1e

2

The heat-transfer equation (13) is rewritten, by use of equations (%)
and (6), as

Z
prj; [cp,e + (cp,l - cp,z)wj(Te - T)% dz = cp,lm(Te - Te)  (37)

and the linear profile

W
—_ =1

o - g; (38)

is assumed.

Substitution of equations (21), equation (38), and the definition
of Ny, into equation (37) gives results similar in form to those for

air-to-air injection (eq. (27)):

1 Mnu,w 1 /hﬁu,w _ (l 1 ~ -0.6) m
- 3 Y, OO ——— -
Moy o Rwl/‘? NPr,w\Rwl/2 A (o0 2
1 0.6 :
<§_p_,_ - l) (1 - Klgo o )——nﬁé (39)
p,2 (pwl-'-wc)
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where
Z T, ~T
K=6_1_f X e” " ug4, (40)
8y Jo WyTo -1, U

and is a function of NPr,w and NSc,w'

Equation (39) may be expressed in the alternative form

0.6 KNge 408 - L Np 706
1 - KN Sc,w Pr__. - .
Q=1 - |%,1 T se,w ep,2 d i Q.- % Rpr 0'6)(Te - T (1)
- 0.6 -0.6
l-%NP-r,w l'%'NPI',W

The second term on the right-hand side of equation (41) has the form

E:P)lﬁ + CP’2(1 - ﬁ)] (E - Tw)ﬁl

where ﬁ, the mean concentration of the forelgn gas in the boundary
layer, 1is

_ l - Im Ol6 .
W= Se,¥ (42)

1 -0.6
1= 3 NPr,w

end where T, the mean temperature in the boundary layer, 1is

T = TW + ( - %NPr,W-O‘G)(Te - w) ()'1'3)

In terms of these mean values equation (L41) becomes

@ = aw - e+ e - M@ - ma
(Lb4)
Heat Heat transfer Boundary-layer shielding
transfer for no

injection
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Thus, in order to achieve the maximum amount of shielding for given
temperature conditions and mass Injection, cp,l should be made as

large as possible and, in addition, T should be made as large as possi-
H b <

ble; if cp,l.> Cp,2 then W should be large, and if Cp,1 cp’2

then W should be small. The variations with N?r,w and NSc,w of

T-T -
—— ¥ and W are shown in figures 7 and 8, respectively. It is seen

Te - Tw 7

thet W increases as NSc,w decreases and that E?LLE%%' increases as
e - *w

NPr,w increases.

Maximum shielding in the boundary layer is therefore achieved when,
for ¢ ’1'> Cp,2’ NPr,w is large and NSc,w is small and, for

P
cp,l <e NPr,w is large and NSc,w is large.

P,2’

These diffusive effects on the shielding are explained qualitatively
in the following way (fig. 9): the convective shielding is most effi-
cient when the gas of higher specific heat is transported in the regions
of highest temperature and velocity, that is, in the part of the boundary
layer farthest from the wall.

Equation (25) shows that when NPr,w is large the velocity boundary

layer is thicker than the thermal boundary lsyer and thus more of the
hot gas mixture is convected. When cp,l'> Cp,2 and NSc,w is smalil,

equation (35) shows that the concentration-boundary-lsyer thickness is
greater than the velocity-boundary-leyer thickness - that 1s, the foreign
gas of higher specific heat diffuses quickly through the boundary layer
before being convected. On the other hand, when Cp,1 < Cp,2 and NSc,w

is large, the foreign gas remains near the wall and displaces the air of
higher specific heat into the hot fast region where it is convected.

An important consideration in any cooling system is the weight
penalty which is incurred in order to maintain the wall at a desirable
tempersture. The relation between the rate of mass flow m and the
temperatures T, Ty, and T, is obtained by substitution of the

expressions

Q= cp 1(Ty - Tem
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and

/2 1 (Mwuw

= T - o]

%o cP’a( e = T (pyn) Npr,w g 1/2
0

(from eqs. (6) and (13), respectively) into equation (41). This substi-
tution results in the following expressions |[when either equation (18)
or equation (19) is used for §§Elgl :

Rw1/2 o
For axisymmetriec flow,

0.4
Pelte -0.6 1/2
0.765 (pwpw) NPI‘ W ( pw“wc) cp, E(Te - Tw)

n = —— (45)
ep,1{Ty - Te) + Sp(T - Ty)

and for two-dimenslonal flow,
0.k :
Pel 0. 1
o.57o< = e) Npr w 0 6(p‘ﬂ1.WC) /2cp,2(Te - Ty)
m = (46)
cp,1(Ty - Te) + &(T - )

where

8p = ep,1W + cp ol - W) (47)

Probably the most iImportant parameter is the total effective heat
capacity Hopp of the coolent; this parameter is a measure of the total

heat absorbed when unit mass of the coolant is used asnd is defined as

Fops = =2 = ¢p,1(Ty - Te) + (T - T4) (48)
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METHOD OF CALCULATION OF RATE OF MASS INJECTICN

The problem of meost interest from practical considerations 1s that
of determining the rate of mass injection m necessary to achieve a
desired wall temperature T, when the stagnation temperature T, and

the coolant tempersture T, are given. This calculation is made com-
plicated by the dependence of the mean specific heat Ep (required for

eq. (45) or eq. (46)) on the rate of mass in?ection; both these quantities
depend on the concentration Wy. (See egs. (47), (42), and (35).)

The following method, however, gives results with relatively little
computation:

(1) The parameters NPr,w end NWg, . are found in terms of W,

for the particular binary mixture under consideration. (Simple empirical
methods are given in ref. 6.)

(2) Equation (43)

T - T, 1 -0.6
=1 =N *
Te - Ty 3 Pr,w
is used to give T (fig. 7).
(3) Equation (42)
0.6
—_ 1 - KNge,w
W=
-0.6
1 -2 Nprow

is used to give W (fig. 8).

(4) Equation (47)

Sp = °p,1¥ + cp,2(1 - W)

then gives & (fig. 10).
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. 0.4
(5) A plot of m W W against W, can now be made
(pwpwc)l/e Pelie

from the results of the substitution of equations (43), (42), and (L47)
into either equation (45) or equation (46).

. 0.4
(6) A second plot of o l/e(fwuw) against Wy can be
(piyC) 7 \Pekte

obtained as & result of converting equation (36) into the following form
for the axisymmetric case:

I 1 oL (k9)
1/2
NSc,

w 3

or into the following form for the two-dimensional case:

i (pwuw)("LL _ 0.570W, (50)
6
(DwuwC)l/e Peke Ngo 2

1
v - 3-Wﬁ

The -intersection of the curves found in steps (5) and (6) gives W, and
0.4

i (pwi-"w)
(pwuwc)l/a Pele

(7) Now, pyiy; can be found from W, and Ty, and pou, from

external conditions; thus, m can be calculated.

step (7) may be omitted if the spproximation

Oy 0.4 _ [Puby 1/2
pe“e pe“e

m

is maede, in which case Y, is given directly by steps (5)
2
(pe“ec)

and (6).
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c
In order to see the main effect of 2,1 on the mass-flow require-~
D,2
Tw = Te
ments for glven temperature psrameter ————, values of the Prandtl
Te - Ty

mumber and Schmidt number equal to unity are taken.

Thus, from equation (43)

H|

- T

e"Tw

)
Wi

from equation (4O) X = %, and from equation (42) W = i— Using this
value for W in equation (47) gives

Then, equation (45) for axisymmetric flow becomes

m - m (F’x\r”%rc)o')‘L _ 0.765
1 1
(PeheC) /2 (p,C) /2\pene p,1(Ty - T¢ AR
¢p,2\Te =T, 2/ 6

and equation (46) for two-dimensional flow becomes

m 0.570

=~

i/ -
(Deuec) / cp,l<fw Tc + l) + -‘{:

¢p,2\le - Tw 2

The results are shown in figure 11. It is seen that the required

c
mass flow is reduced by a large factor for the higher values of —cf)&
2
J

Te - Ty

e
inasmuch as the shielding by heat convection in the boundary layer is
large.

-T
This is especially true for the higher heating rates <as -I]—:w———c ->O)
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CONCLUDING REMARKS

An approximate analysis has been presented whereby the reduction
in heat transfer near the stagnation point may be calculated with little
difficulty when the coolant properties are known. The agreement with
available exact solutions for air-to-air injection is extremely good
in view of the simple approech employed, and the gualitative trends of
the results for foreign-gas injection in explaining the shielding mecha-
nism suggest that the approximate analysis will generally give reliable
results. It is expected that the simplified calculation which shows
the dependence of the coolant mass requirement on wall tempersature and

coolant specific heat will provide a good eéﬁimate for engineering
purposes.

The conclusions of the anslysis are summarized briefly as follows:
Maximum boundary-layer shielding is achieved when the gas of higher
specific heat is convected in the hot fast-moving part of the boundary

layer farthest from the wall; this requires that the coolant gas intro-
duced have

(a) High specific heat compared with that of air
(v) High binary diffusivity (that is, small Schmidt number)
(¢) Large Prandtl number.

Of these three properties the first is the most important, whereas
the diffusive effects are of secondary importance.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 3, 1958.
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APPENDIX

FLOW WITHIN THE POROUS WALL

For the purpose of the present analysis it is assumed that the wall
is uniformly porous and presents, to the stream, an area A of solid
meterigl and an area B across which coolant gas is transported.

The menner in which gas is transported through the porous material
is given by

-pD1o % B * PVWB = #(A + B) (a1)
Y
Diffusion Convection Total gas
toward surface toward transported
surface

since m 1is the rate of mass 'introduced per unlt area of body surface.

The air contained in the mixture is transported according to the
following equation:

oD X 3 = ov(1l - W)B (a2)
dy

Diffusion of ailr Convection

from surface toward surface

since there is no net transport of air into the body in the steady
state. From equations (Al) and (A2),

ovB = m(A + B) (a3)

The equation for transfer of heat within the porous well is

4aT .
(A + 1113)d_y = cp,1(T - Te)m(A + B) (ak)
Conduction into Rate heat absorbed

solid and coolant by coolant
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Equation (AhL) may be written

kg = T - To)h (45)

where k is a mean value of the effective thermal conductivity

kpA + kB :
5 Similarly, equation (A2) may be written (by using eq. (43))
+
as
— W .
ED1p — = mW (A6)
12 dy
—_— . D, B
where le2 is a mean value of ; lEB'
+

Equations (A5) and (A6) have solutions (similar in nature) of the
form

fep, 1y
k
T =Te + (T -~ Tole (A7)
which satisfies the condition T —»T, &s y — -, and
=§L€Y
W=1-(1- ww)elef'-’ (A8)
A characteristic thickness O may be defined as
-=00 s
T -7 k
6T=f —dy =3 (49)
o Tw-Te mey, 1

in which the temperature changes from its value at the surface Ty to
1ts value st the far interior T,. '

Simllarly, the concentration W changes from W,, &at the surface
to the velue 1 in & layer of thickness 6y (within the porous wall)
where
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—co )
o] m

It is seen that both thicknesses depend on the ratio %. It is desirable

to limit the relatively high temperature region within the wall to a
narrow region near the surface; the specific heat Cp must be large

and k must be small, that is, both kp and k should be small. Con-

siderations of the boundary-layer flow outside the wall also lead to the
conclusion that the specific heat Cp,1 should be large and k should

be small (so that the Prandtl number msy be as large as poésible). Thus,
these requirements result in two desirable features:

(a) Confinement of the high temperatures within the body to a
narrow reglon near the surface and

(b) Maximm convection of heat away from the stagnation point (as
shown in the body of the report)

The conditions at the surface as it is approached from within the
wall are given as follows:

From equations (A2) and (A3)
-(PDla EH) B = (1 - Wy_)m(A + B) (A11)
and from equation (AkL)
(kpA + kB)(%g)w_ = cp,l(Tw - To)m(A + B) (a12)

where the subscript w- denotes that the surface is approached through
negative values of y. The rate of heat transfer from the stream

boundary layer is (k %%) (A + B) so that the boundary condition
W

(eq. (A12)) becomes

Thus, there is a discontinuity in %5 at the surface when Xk, # k.
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Similarly, the condition of no net transfer of air to the body 1s
‘glven by

-(lez QE) (A + B) = (1 - W) p,vie(A + B) (A1k)
ay /w

obtained when the surface is approaeched through positive values of y.
Since

Pu-Vy- = I = pyVy

equation (AlL) may be written as
_(pnla d_W) = (1 - Wi (815)
dy/w

It 1s noted that v 1s discontinuous since there is & discontinulty

in the area available for convection given by the ratio The
concentration gradient gg is also discontinuous for the same reason;
this is expected by analogy with the temperature gradient 4t Equa~

tions (A13) and (Al5) are seen to be identical with equations (3) and
(2) when evalueted at the wall.
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Figure l.- Flow configuration.

NACA TN 4391
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Pigure 2.- Boundary-leyer mass balance.
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